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ABSTRACT
In this paper we extend the result due to Vinter - Kwong (SIAM J. Control
Optim., 19 (1981) pp. 139-153) on a regulator problem for a hereditary
differential system with delays 1in the control to the case when point delays
are included in the control. The main difference from the case when point
delays are excluded is that we have to deal with an unbounded, unclosable

input operator in our abstract formulation.
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1. Introduction

In this paper we consider a quadratic cost control problem both in finite
and infinite time for a linear functional differential equation with delays in
the control. The class of problems considered is fairly general and may
include "point delays" in the control.

Such a control problem has been studied by a number of authors [4], [7],
[8], and [11]. For the case when point delays are excluded in the control,
complete results are available [11]. Reference [8] is concerned with the
infinite time problem for the case when only point delays are present in the
state and control. In that paper, however, no justification of existence and
uniqueness of solutions to a steady state version of a Riccati-like equation
which characterizes the optimal feedback operator was obtained.

The method used here is based upon an equivalence between the solution of
functional differential equation with delays in the control and that of a
"dual” evolution equation, which is motivated by the idea of Vinter—Kwong
[11]. By using this equivalence, the quadratic cost control problem may be
transformed into a dual control problem, which has been discussed in [5] as a
dual deterministic control problem to the filtering problem for a stochastic
functional differential equation with delays in the observation.

It is shown that the optimal control to the finite time problem may be
expressed in a fgedback form in terms of a unique solution to a Riccatil
equation which includes an unbounded operator in the quadratic term. It is
necessary to overcome this unboundedness when the steady state solution of the
Riccati equation is discussed. The principal result is that under the usual
assumptions of stabilizability and detectability the optimal solution to the
infinite time problem may be expressed in a feedback form through 'a unique

solution of an "algebraic Riccati equation" and that the closed loop system is

stable.




As an application of the above we may discuss the stability of a filter
equation for a stochastic functional differential equation with delays in the
observation.

The following notation will be used throughout the paper. LZ(I;Ra) is
the Hilbert space of R a-valued, square integrable functions on the compact
interval I. In the special case where I = [-r,0] with r > 0 we shall
abbreviate the notation and simply write Lo. In such a case the range space
of the functions is determined by the context. Lloc(I;R a) is the Hilbert
space of R *~valued locally square integrable functions on the semi-infinite
interval I.

If X and Y are Banach spaces, then the space of bounded operators
from X into Y 1is denoted by [(X,Y). D (A) denotes the domain of an
operator A. The adjoint of a densely defined linear operator A from one
Hilbert space to another 1s written by A*. The transpose of a matrix A 1is
denoted by AT, X1 denotes the characteristic function of the set I.

We denote by M, the product space B x Lz([-r,O];ly). Given an
element ¢ € MZ’ 4)0 € RN and ¢1 € LZ denote the two coordinates of

b, ¢ = (¢0,¢1). The symbol < +,¢> stands for the natural inmer product in
M. All the other inner products will be denoted by <e,¢> and the
underlying space is understood from the context.

el denotes the norm of elements of a Banach space and of operators between
Banach spaces. Given a measurable function x:[-r,«) » R% and t > 0,

the function xt:[-r,O] » R% is defined by xt(e) = x(t+9).



2. The Functional Differential Equation

Consider the inhomogeneous functional integral equation in B

we

t
0
(2.1) (t) = ¢ + j(;Lxsds +J(‘) Bu_ds,

X, =¢ €L and Uy = e

The control function u(e) takes values in R and

B : Lz([-r,O];]in) >R is defined by

0
(2.2) Bu = Bju(0) + Lr dc(e)u(e),

k 8
(o) = 3 Bix (8 + [ BEME, 6 e [-r,0],
i =r

i=1
where
—r<ek<-~-<91<0 and

and
0

k
Z B, + f B(8) 40 < =,
i=1 -h

The linear map L : Lz([—r,O] ; Iy) +B s represented by

0
(2.3) Lo= [ dau(e)e(e) + 46(0),
e o
k :
u(e) = i);jl Aix[ei,O] + _[r A(Z)dE, 6 ¢ [-r,0],

where

o

1
X oA+ [ a®ac<e.




Note that if u ¢ L;OC ([-r,0]; ) then the inhomogeneous term "But" is

locally square integrable. Hence it follows from [3] that there exists a
unique locally absolutely continuous solution to (2.1) with

¢ = (¢0,¢1) e M, and u € L;oc([-r,w): rY.

3. A Dual Evolution Equation

Let us consider the 'transposed" homogeneous functional integral

equation:
0 Eor
(3.1) x(t) = ¢ + fL x_ds,
0 s
_ 1
xo =¢ € L2’
where

0
1Ty = Ag¢(o) + f dnT(0)6(8) for ¢ e L,([-1,0]; ®).

-r

From known results [3], [10] we may state the following.

Lemma 3.1 Let the family T(t),t > 0 be the solution semi-group on M,
associated with (3.1). Then

(1) its infinitesimal generator A is characterized by

DCA) = {o = (%01 ew |4t e, ana o0 = o0},
Ao = (LT,8), for ¢ € D(A);
(11) the adjoint A* of A generates a strongly continuous semigroup

T*(t), t>0 on M, and is defined as follows:



DAY = o= (°,6") e M, | 2 e L, and 2(-r) = 0},

where
2]

20) = 610 = [ au@n’, o e [-r,0l,

hat o

*
(a61% = a6 + o),
W e1tce) = - 2o, 6 & [-r,0]
Define the linear map B:M, + E' by
T O 0 T 1 0 1
(3.2) Bo=B o0 + [ dT(8)6 () for 6= (6,6) eM,.
-

Then D(B)2D(A).

D(A) itself is a Hilbert space when endowed with the inner product
(3.3) <x,y>D @) = <X, 7> + <AX, Ay> for x,y € D(A),
and will be denoted by X. Recall the following ([6, Lemma 3.2 and 3.3]):

LEMMA 3.2. Let X ©be the strong dual space of X with respect
Mz-norm. Then
(1) T’(t), t > 0 defines a strongly continuous semigroup on
and D(A") = M,.
(ii) BT(+) € L(Mz,Lz([O,T]; Rm)) for any T > 0 and
T

(BT('))*u = f T’ (s)B ‘u(s)ds for u e Lz([O,T]; R,
0

to




where (’) denotes the dual operators.
Note that
8

(3.4) B'u = (B.u, == ( f dz(g)u))e X° for u e K.

-r

Let us consider a dual evolution equation in X’;

(3.5) LX) = A X(e) + Bu(e),

x(0) = ¢ € X’.

Then (3.5) has a unique mild solution

t
(3.6) x(t) = T'(t)¢ + f T’ (t-s) B’u(s)ds.
0

Since T’ (t) M ? the restriction of T’(t) to My 1is equal to T*(t) for
2
each t > 0, , by virtue of Lemma 3.2, X(+) is a continuous function in M,

for ¢ eM, and uce L§°°([o,m); ).

4, Equivalence

In this section we derive an equivalence between the solution to (2.1)
and the function x(+) defined by (3.6). For this purpose, we introduce the

continuous, linear map M(e,*) : M, x L,([-r,0] ; ) » M,

2

(4.1) (62, 01),v()) = (6°,m()),

where



8 6
n® = [ el + [ dee)v(e-e).
-

-r
We remark that our operator M 1is a natural extension of that introduced in

[8] and [11].

Theorem 4.1, Suppose that x(t), t » - r, is the solution to (2.1) and
%(t), t > 0 is defined by (3.6), with initial function & = M(¢,n).

Then for t > 0

(4.2) x(t) = M((x(t), x ()], u ().
Moreover for t » r and for arbitrary initial function ¢
(4.3) (6) = M(E20),x0(+)),u, (),
where ;O(t) is the first component of x(t).

*
Proof: Assume ¢ e D(A ) and u e U = {absolute continuous functions with
u(0) = 0 and locally square integrable derivative }. Then
~ * t .
ATR(t) = T*(x)A ¢ + [ T'(t-s)B'u(s)ds - B'u(t) in X’.
0
Hence A ‘X(t) + B’u(t) is continuous in the topology of M,, which when
combined with the fact that =x(+) is a strong solution to (3.5), implies

%x(t) is continuously differentiable in the topology of M,.




Now ;(t) must satisfy

(4.4) L 2% = 470 + 7500 + Bu(t),
d ~1 d a , 2
(4.5) TTF (£50) = - g a(t30) + 35 (f_r dz(®u(t)),
where
~1 § ~0
(4.6) z(t38) = % (t;6) - f dp(e)x “(t), for 0 ¢ [-r,0].
-r

Define for t » 0 and 8 ¢ [-r,0]
N 6
(4.7) z(t;0) = z(t;0) - f az(e)u(t).
-Tr

Then z(t;0) is differentiable in 6 and we write (4.5) as an equation for

Zz(t;0):

6 . 4
S0 = - - [ wEie) - [ e,

Now consider the semigroup of truncated right shifts on

Ly, {&(t), t > 0}

g(8-t), -r < 8-t < 0
(4.8) (®(t)g(+))(0) = '

0, otherwise

for 6 ¢ [-r,0] and g e L Then (-d/d6)(e) is its infinitesimal generator

2.
and ;(O;-) evolves in the domain {¢ £ L2,$ £ L2 and ¢(-r) = 0}.



We may view Z(t;+) therefore as a strong solution to an evolution

equation in L,. Hence we have

t ] L] .
Z(t3e) = ®(t)z(03e) - f d(t-s) [f du(g);o(s) + f dC(i)G(s)]ds.
0 -r -r

By using (4.8) and integration by parts we obtain

6 2]
5 “Lo: ey - Oty -
(4.9)  F(£50) = X (050-t)x_ o1 (6-t) Lr dp(E)X (1) j_'r dz(E)ult)
6
+ (ap()30 (t+2-8) + dL(E)ult+E=6)).

max[-r,6-t]

Now suppose t > r. Then it follows form (4.6) and (4.7) that

9
(4.10) §1(c;e) = f (dp(§)§0(t+g—e) + dC(E)u(t+E-0)).
-r

*
Hence (4.3) holds if ¢ € P(A) and u ¢ U.

Next suppose that the initial function [(¢0,¢1),n) of the equation (2.1)

belongs to the subspace Q:
Q = {((h(0),h(+)),v(*)) € M, x Lzlﬁ,G el, and v(0) = o},

and take ¢ = M((¢O,¢1),n) as an initial function of (3.6). Then ¢ € D(A*).

Indeed

* 1 _ ® o1 0 .
[A7¢17(8) = [ dw®)é (g-0) + [ dc(EIn(E-0) e L,.

-r -r

-10-




For such a choice of the initial function, by (4.6) (4.7), and (4.9) we

have

8-t
Fl(e:0) = f (du(B)o’ (t+8-8) + dL(E)n(t+E=9))
0
9 ~0
+ f (du(e)x" (t+E-6) + dT(E)u(t+E-8)),
8-t
for -r < 8-t < 0 and t > O,
which may be written as
~1 < ~0
(4.11) % (130) = [ (du(®)X (t+E-8) + dL(E)u(t+E-9)),
0

when we take ;0(6) = ¢1(6), u(®) =n(8) for 6 ¢ [-r,0], (recall
¢1(O) = ¢O = ;0(0) and n(0) = u(0) = 0). It follows now from (4.4) that the
locally absolutely continuous function on [-r, =) defined to be
¢1(t), z e [-r,0] and ;O(t), t ¢ [0,), coincides with the solution =x(t),
t > -r to (2.1) because of the uniqueness of solutions of (2.1). Hence from
(4.10) and (4.11) we see that (4.2) holds if (¢,m) € Q and u e U.

Note that Q is dense in M, X L, (I-r,0]; B) and DA*) x U is dense
in M, x L2([0,t]; ) for any t > 0. - Hence by using the argument in [4,
pg. 145}, which is an application of extension by continuity arguments, we may
show (4.2) holds for any initial function (¢,n) € M2 x L2 and (4.3) holds for

any initial function ¢ e M, and control u g Léoc(lo,w); ).

(Q.E.D.)

-11-



5. A Finite Time Quadratic Cost Control Problem

Let C be a p x N matrix and let the initial function
0 .1 .
(67,07 ),m) ¢ M, x L, be given.

Consider the following control problem:
¢ 2 2
(5.1) Minimize J([0,T]ju) = f (lex(e)|© + |u(e)]|“)at
0

over u(e) ¢ Lz([O,T]; E'), subject to (2.1).

Define C e L( RP,My) by

(5.2) Cy = (c'y,0) e M, for ye ¥

Then by Theorem 4.1, (5.1) may be reformulated as
I ke 12 2
(5.3) Minimize j' (|c ()| + Ju(e)] )at,
0
over u(e) ¢ L2([O,T]; ]Km), where ;(t), t >0 is given by (3.6) with

initial function ¢ = M((¢0,¢1),n).

Hence applying Proposition 6.3 and Theorem 6.6 in [5] we obtain the

following:
Theorem 5.1. The unique solution u*  to the control problem (5.1) is
given by
* N*
(5.4) u(t) = - BPL(OX (b)),

-12-~




~k *
where x (t) is the optimal trajectory corresponding to u of (3.6),

and RT(t) is the solution to the Riccati equation

4

(5.5) it

< P(t)d,0>» = 2« AP(t) ¢, o>+ <BP(t) 6, BP(t)¢> = <Ck¢,C*¢>,

for all ¢ e M

” and P(T) = 0.,

which is unique in the class of nonnegative definite, self-adjoint operators
operators on M, satisfying (i) ||AP(t)¢|| is locally square integrable and

(ii) <P(t)¢,4> is locally absolutely continuous for all ¢ € M2.

Moreover we have

(5.6) <PT(0)M(¢,n),M(¢,n)> = inf J([0,T]:u).

ok

From Theorem 4.1 x (t) = M((x*(t),x:(-)),u:(-)) where x*(.) is the

solution of (2.1) corresponding to u*  and hence

* * * *
(5.7) u (£) = = BPp(eM(x (t),x (*),u (+)).

6. The Infinite Time Problem

In this section we consider the infinite time wversion of the control

problem (5.1), i.e.,

(6.1) Minimize f (| ex(e)y| >+ lu(t)lz) dat,
0

over u g L2([O,w); "), subject to (2.1), given initial function

-13-



(¢,n) € M2 X Lz'

For any K ¢ L(MZ,IP) it is known [5, Lemma 6.4] that the equation

t
(6.2) () = T () + [ 1 (t-s) B'Kals)ds,
0

has a unique continuous solution for each ¢ e M2.

Define U(t) & L(Mz) as
(6.3) U(e)e = x(t) for each t » O,

where x(+) is the solution to (6.2). Then it is easy to show that
U(t), t » 0 satisfies the semigroup property. Hence U(t), t > O defines a
strongly continuous semigroup on M2'

Note that
(6.4) —g—t—U(t)d,; = WE)(A” +B° K¢  in X,

for any ¢ ¢ M2‘ Hence the domain of the infinitesimal generator associated
with U(t), t » 0 is given by {¢ € M2|(A' +B'K)o € Mz}, which is not equal
to D(A*) in general,

Definition 6.1

(1) The pair (A,B) 1is stabilizable if there exists an operator
K e L(Mz, E') such that the semigroup U(t), t > 0, defined by (6.3) is

exponentially stable, i.e.,

wt

MCEdn < Me ©-, £ >0

-14=-




for some positive constants M and w
(ii) The pair (A,C) 1s detectable if there exists an operator
F e L(I@,Mz) such that A* + rc* generates an exponentially stable
semigroup on M2.

It should be noted that by the theorem due to Datko [2] this definition
of stabilizability and detectability is equivalent to that defined in {11,
Definition 7.11].

The following is the solution to the control problem (6.1)

29

Theorem 6.2. Consider the equation in P
(6.5) 2 <APp,6> - <BP6,BPe> + <C 6,C 6> = 0,  for all ¢ eM

within a class of nonnegative definite, self-adjoint operators in L(Mz) such

that AP ¢ L(Mz). Then

(i) If (A,B) is stabilizable, then (6.5) has a solution

(ii) If (A,B) is detectable, then (6.5) has at most one solution, and
if P 1is the solution, then A’ - B’BP generates an exponentially stable
semigroup.

(1ii) 1If (A,B) is stabilizable and (A,C) is detectable then

PT(O) + P(strongly), as T » o,

where P 1is a unique solution to (6.5), and PT(-) is the unique solution to

(5.5) for each T > 0, and the optimal solution to (6.1) is given by

-15-



* ~ %
u (t) = ~-BPx (t),

~k
where x (+) satifies

t

(L) = T(t) - [ T (t-s)BK %(s)ds,
0
57

(60, 60),m).

s
H

~k * * * *
From Theorem 4.1 we have x (t) = M((x (t),xt(-)),ut(-)), where x ()

*
is the solution corresponding to u .

Moreover,
<PM(4,n),M(d,n)>» = inf J([0,=):u).

7. Proof of Theorem 6.2.

Under the assumption of stabilizability there exists a K such that the

corresponding semigroup U(t), t > is exponentially stable. Then

(7.1) inf {J([0,=);0) [u & Ly([0,=); R ™)}

w®

< (uCu2 + uK||2) f ||U(t)¢n2dt
0

< BH¢H2 for some positive constant 8.

It follows from the relation (5.6), (note that (5.6) holds for an arbitrary
initial function ¢ € M2) that Pp(0), T > O forms a monotone nondecreaing
sequence of self-adjoint operators on MZ’ uniformly bounded above. Hence by
Theorem 2 [12, pp. 304] PT(O) converges strongly to some self-adjoint

operator P satisfying P < BI.

-16~-




However since B is not in L(MZ,I?), this may not imply the

convergence of BPT(O) ¢ for any ¢ ¢ Mz. Hence we need further
investigation.
Lemma 7.1. APT(O)¢ + AP¢  (strongly) in M2 for any ¢ ¢ M2.
Proof: By using standard arguments in [6] and [1, Chapter 3] we may show
that
P oy = [ sy cl
(0% = jg (s) CC X (s)ds,

~*
where xT(-) is the optimal trajectory corrresponding to u* for each

*nk
T > 0. Since CC‘XT(t) = (CTCEg ,0) ¢ M2 for each t > 0, it may be written

as

T *
[PL(0)41(8) = fo X(s+0)CTCRY (s)as, ® & [-r,0],

where X(t), t > -r is the fundamental matrix solution of the equation (2.1):

i.e.,

oo
(7.2) X(t) 1+f L'X ds,
0

X(0)

I and X(8) =0, 6 e [~r,0).

Since PT(0)¢ e D(A) for any ¢ ¢ M,, we have from Lemma 3.1

T *
[APL(0)¢11(0) = &5 J(;X(s+9)CTC§Cr’ (s)ds,

T

)

*
dX(s+e)CTC§g (s), 6 ¢ [-r,0].
0

-17-



Using (7.1) we obtain

T T

*
1 T ~0
(7.3) [APL(0))7(8) = Aj J;X(s+e)C Cxp (s)ds

T O * *
v [ f duT(g)X(s+e+g)cTcﬁ (s)ds + CTCES (-8),
0 ®-r
where it should be noticed that -2r < 6 + £ < 0.
Now we view our problem as that defined on the extended interval [-2r,0].

Let P;(-) be a solution of the Riccati equation in

B x L2( [~2r,0]; ly)

d e _ _ e
T <PF(£)6,63 = -2 AF()0, 63 .

*
+ <BEPP(£)9,BSPP () o> - <C® 6,C% o>

PE(T) = 0 for all ¢ = (¢°,¢1) e B x L, ([-2r,0]; ®),
where (-,-)e denotes the natural inner product in RN x L2 ([—2r,0];ly),
and if 1 ¢ (Lz([—2r,O]; ﬁq), L2([—r,0];ly)) is defined by

mbl = ¢1X[-—r,0] for ¢>1 € LZ([-Zr,O]; 1%\1), then

DAY = {6 ¢ RN xL,([-2r,01; R & e 1, and o = ¢}(O)},

2

A% = (WTne 80 € Y x 1,

e

B®s = B(o0, mol),

* 0
Ce¢=c¢,

for ¢ = (¢0,¢1) € RN X L2([-2r,0]; ly)-

-18-




Let us consider the corresponding control problem:

T
Minimize J®([0,T];u) = j‘ (|ce*§e(t)lz + lu(t)iz)dt,
0

over u ¢ Lz([O,T];IF), subject to

t ’
) = 8e) % + [ T(t-8)"8® u(s)ds,
0

%20) =6 e R x L, ([-2r,0]; B,

where Te(t), t > 0 is the semigroup generated .by A®. Note that by Theorem

4,1, for u e L%OC([O,Q); K") such that u(t) =0 for t e [0,2r], ()

satisfies
~0® ~0°
@) = ¥ (& (2r),%,,(+)),0),
and
~e e ~0¢ ~0¢
) = 1 (E (0), X ())u. (),
where

Me((¢0:¢l),n) = (¢09me('))s

£ ancerelz-0) + [° ac(eInce-e), @ e [-r,0]

n°(8) =
0 s otherwise.
Now let u{e) be chosen as follows
0 t e [0,2r],
u(t) = e e
K(xW (t), m=x (1)), t > 2r.

-19-



Then it is easily verified that

e 3T 0 2 ~ 2
<<Pf;(0)¢,¢ > = inf J° < f lcx® (£)] © at + gIxS(2r)1”°.
0

Hence P;(O) is uniformly bounded above and so P;(O) converges strongly in
RN x L2([—2r,0]; ly).
0 1.,,1 e 0.1 1
Now since [Pr(0) (¢ mo)]" = =[P(0)(¢",0 x[_r’O])] s

it follows from (7.3) that

0

%
(7.0 1APL0)011 (@) = P2 (o) + [ aT@PLOTICo+) + ¢TRy) (-0,

-Tr

where

El(e) = d’lx[-r,O](e) for 6 e [-2r,0) and ?];0 = ¢0.

By using the same arguments in [9, Theorem 4.1, p. 143] and [6,
*knk
Proposition 3.1] we may show that ¢( xT(—e) converges strongly in L, as
T » =, It now follows from, (7.4) that [APT(0)¢]1(~) converges strongly
in L,, which when combined with the fact that p(d/de) € D( LT)
0 T 0 Tl

and [AP¢T(0)¢] = | PT(O)¢, implies [APp(0) ¢ ] converges in .
Hence we may conclude that APT(O)¢ converges strongly in M, for any
¢ € MZ' Since A 1is closed and PT(O)¢ > P¢ strongly, this implies

APT(O)cp converges strongly to APy for any ¢ ¢ M2' (Q.E.D.)

Since D (A) € D(B) it follows from Lemma 7.1 that BPT(O)¢ + BP¢ in

K for any ¢ ¢ M,. Then it is easy to show that P satisfies (6.5) [6].

-20-




To prove the uniqueness under the assumption of detectability we need the

following lemma.

Lemma 7.2. Suppose there exists a solution P to (6.5) and (A,C) 1is
detectable. Then A’ - B’BP generates an exponentially stable semigroup on

M,.

Proof: Since (A,C) is detectable there exists an operator
F € L(RP,MZ) such that A"r + CF* generates an exponentially stable

semigroup S(t), t > 0 on M,, i.e.,

2’

—~wt
1s(t)1 <k e , £t >0 for some positive constants «x and w.

Suppose U(t), t > 0 is the semigroup generated by A" -B’B 4, then we may

show that
% tos * t
(7.5) Uty = s (&) - f S (t-s)FCU(s)¢pds - f S’ (t-s) B’ BPU(s)dds,
0 0

for any ¢ ¢ M2 since
’ , ’ * * ’
A -B’BP= (A" +FC) - (FC +B'BP) in X’,
and A +CF* is associated with the functional differential equation in B

d T %
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Now suppose z(t) = U(t) ¢ » Then we show that

©

(7.6) [Icml?at <o ana [ [BPz(e)[%at < =,
0 0

for any ¢ € Mz.

From the assumption
2 CAPz(t),z(t)» - <BPz(t),BPz(t)> + <C z(t),C z(£)> = 0,
for each t > 0 , it follows from [5, Theorem 6.5] that
& @P2(t),2(2)> = 2€6AP(£)z2(t),2(£)> - 2<BPz(t),BP2(t)>.

Hence we have

g? €Pz(£),2(t)Y = <BPz(t) BPz(t)> + <C z(t),C z(t)> = 0,

and therefore
£ 2 £ 2
(7.7) <Pz(t),z(t)> = f |BPz(s)| “ds + f |C"z(s)| “ds = <Pp,d>,
i 0 0
for each t » 0, from which (7.6) holds.

Let us define

t
z3(t) = J; S’ (t-s)B’Bz(s)ds,
and
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u(t) = - BPz(t), t > 0.
Then it follows from Theorem 4.1 that
z5(t) = M(x(t),x_(+),u (),
where x(e) is the solution to (2.1) with initial function (¢,n) = (0,0).

(The operator M and x(e¢) are associated with the perturbed system

i(t) = (LT + CF*)Txt + But of (2.1).) But we have

t
(x(t),xt(°)) = JE S(t-s)(BuS,O)ds,
where
@ 1 O 1 0 @ 1
(f ]Busfzds>/2 < (f]dt;(e)|>/2 (f]dz;(e)] f]u(s+e)]2ds)/2
0 -r -r 0
+ i 246 12
IBO! J; |u(s)|“ds s
<(|B]+ ¢ |dz(e)] (a |u( )|2d Yy
u(s S .
ol f tason) {f, e )
Hence

r 2 Yy « 4 [ 2 Y
(j(') II(x(t),xt)lle dt) <;(|BO|+Lr ]dz;(e)l)(fo Ju(s) | ds) 2,

using Young’s inequality. Since M is continuous from My x L2 into M2,
we have

(- 1 -] [~ -]
(7.8) (f 12,4 (t) n2dt) 72 ¢ 1 5 ({BO| + f ldc(e)l) <f|u(s)|2ds)1/2.
0 0 0
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Now we have from (7.5)

t
1zCE) 1 < ISTCE)el + f 1S(t=s) ! IIFII|C*z(s)|ds + Nz (E)1,
and therefore 0
- 2 1Y 2 1/2 - * 2 Y - 2 1/-
(fnz(t)n at) "2¢ (%B) [y +% hFN (/ | ¢ 2(s) 7 |ds) "2+ (f ENCHY at) 2
0 0 0

Hence we obtain, from (7.6) and (7.8)

©®

f!lz(t)!lzdt { », for any ¢ ¢ M2’
0

Now by Datko’s theorem [2], we may conclude that ue), t >0 is

exponentially stable. (Q.E.D.)

We now turn to prove the assertion (ii) of Theorem 6.2. Suppose there

exists two solution Pl and P2 to (6.5). Then we have, from (7.7)
2 * 2
(7.9) f( [BPizi(s)] + zi(s)| )ds = <P, 4502,
0

for any ¢ € M2 and 1 = 1,2, where zi(-) satisfies

t

zi(t) = T*(t)(b - fT'(t—s)B'BPizi(s)ds.
0
Let us define
v(t) = -BP?_zz(t) + BPlzz(t), t > 0.
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Then S

[ -]

<Py, > = f (l\'(t)l2 - 2<v(t),BRz,(£)> + <BP z,(t),BP z,(t)>

0 * *
+<Cz,y(t), C zz(t)>)dt.

But it follows from [5, Lemma 6.5] that

d _ -
T <P122(t),zz(t)> = 2<APlzz(t),z )y - < BPlzz(t), BPzzz(t)>,

* *
= <BP122(t),BP122(t)> - <C zz(t),C zz(t)> - 2<BP122(t), BPzzz(t)>,
* *
= - <BP122(t),BP122(t)> - <C zz(t),C zz(t)> + 2<BP122(t),v(t)>.
Hence we obtain

a @©
<B4, 0> = foyv(t)lzdt + /; --g—t-<1>1z2(t),z (t)» dt,

-]

- f [v(t) |2t + <P ,0d - lim <P z,(t),2,(t)>,
t

0 Y

= <P 4, 6> + flv(t)lzdt,
0

for any ¢ € MZ’ where we need the fact that sz(t)u +0as t =+ « for any

¢ e M2.

This implies Pl < PZ. Likewise we may prove that Pl > P whence, by

22
the property of partial orderings Pl = PZ'

Finally we prove the last statement of Theorem 6.2, Consider any
control u ¢ L;oc([o,w); E®). Then for each t > 0 and ¢ ¢ My,
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7 2 X 12
PB4 < f(|u<s>| + |C%(s)] “)as,
0
where x(+) is given by (3.6). Since PT(O) > P strongly this implies

<Py, > =f (| C*;((s)lz + |u(s)| 2)ds.
0

Hence it follows from the uniqueness of the optimal control and (7.9) that
*
u (t) = ~BPz(s),

is the optimal solution to (6.1).

8. TFilter Stability

In this section we discuss the stability of a filter equation for the

stochastic delay system

t
(8.1) x(t) = 6(0) + fLTx ds + G W(t), X5 = 6
0 S

t y
y(t) = fo ds + F 2v(t).
0 S

Here the observation process y(+) takes values in ﬁ. The linear map
H:LZ([-—r,O];Iy) > 1? is defined by
0

(8.2) Ho = f dy(6)6(9),
-

where vy is a matrix valued function of bounded variation in (-r,0).
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w(t),v(t) are independent standard Wiener processes in ¥ and RP
respectively. The matrix F is positive definite and symmetric. The initial
function ¢ is assumed to be deterministic and continuous.

Define the abstract state z(t) e M2 by

z(t) = (x(t),xt(o)) e M, for each t > 0.

Then it follows from [5] that z(t) is C([—r,O];Iy) - valued, Gaussian and

continuous w.p.l, and satisfies the stochastic evolution equation

(8.4)

&2 () ,4» = &(0)> + j (z(s),A*¢> ds + <W(t),5*¢> for all ¢ € D(A*),
0

where
2(0) = (6(0),8()) € M,,
and
G e L(Rm,Mz) is defined by,
(8.5) Gu = (Gu,0) ¢ M, for u e B,

Let us denote by z(t) the conditional expectation E[z(t)ly(s)w

0 <s <t]. Then z(t) is given by

- t
(8.6) z(t) = T(t)z(0) + fT(t-s)[HP(s)]*F_ldI(s),
0

where H:M2 + RP is defined by
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(8.7) Ho = Ho!  for 6= (6%,0) e my,

and the innovation process I(t) 1is defined by

t .
(8.8) I(t) = y(t) = f Hz(s)ds, for each t > O.
0

The error covariance operator P(t), t > 0, defined by

(8.9) <P(£)6,0> =E[€2(t) = 2(£),0> <2 (t)=z(t),43],
satisfies a Riccati equation:

(8.10) - €P(0)6,63 = 2¢HE)8,0% - HROIGHP(E)E> ) + 0,870,

F—l
for all ¢ e M and P(0) = 0,

2

where <+,*> .: RPx RP s R is defined by

F1

T -1
<y;59,>  =¥[Fy,, for y.,y, e B,
-1

F

and is the unique solution of (8.10) within the class of nonnegative definite,
self-adjoint operators on M, satisfying (i) 1AP(t) ¢! is locally square
integrable and (ii) «P(t)¢,4> is locally absolutely continuous for any

¢ € MZ’

The the next theorem follows from Theorem 6.2.

Theorem 8.1, Suppose (A,H) 1is stabilizable and (A, G) is detactable.

Then the optimal filter equation defined by (8.6) and (8.10) is stable in the

following sense.

(i) The error covariance operator P(t) converges strongly to P which
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satisfies

kK
+ <G ¢,G o> = 0, for all ¢ e M

1

2<APy, 0> = <HPp,HPp> _ g
F

[HP 1°F Ly generates

(ii) The closed loop operator A

exponentially stable semigroup on M,.

Corollary 8.2, The stationary filter equation is given by

- t
2(t) = U(£)z(0) + f UCt-s)F ldy(s),
0

* -
where (/(t), t > 0 is the semigroup on M, generated by A - [HP] F 1H.
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